

Angle-resolved photoemission spectroscopy of quantum materials

Cheng-Maw Cheng

National Synchrotron Radiation Research Center Department of Physics, NSYSU Graduate Institute of Applied Science and Technology, NTUST

Outline

- Introduction to angle-resolved photoemission spectroscopy (ARPES)
 - The concept of energy band.
 - The principle of ARPES.
 - Scientific case : cuprates, graphene, TMDs and topological insulators.
- Probe the electronic structure of emergent materials
 - Scientific opportunities in nanoARPES.
 - The challenge and design concept of nanoARPES.
 - Beamline and end station design.
- Summary

Valence Electrons

- The outer shell is called the valence shell.
- Electrons in the outer shell are called valence electrons

Concept of forming energy bands

Formation of a molecular orbital

Formation of Bands

What we are interested in

Wijeratne, Kosala, Conducting Polymer Electrodes for Thermogalvanic Cells (2018)

Energy Band Diagram

Fermi-Dirac Distribution

Thermal Properties of Free Electron Gas: Almost every electronic transport property of solids is proportional to $D(\mathcal{E}_F)$.

Energy Band Diagram

Two approximations

Nearly free electrons. Electrons are non-interacting in a periodic crystal potential which is relatively weak and can be treated as a perturbation. As in the free-electron-gas model, they are still subject to the Pauli exclusion principle.

Free electron gas :

The interactions between electrons and between electrons and nuclei are turned off, subject only to the Pauli exclusion principle.

Tightly-bonding approximation

Electrons are tightly bound to particular atoms, overlapping only weakly with neighbors.

- Deeply bound "core" electrons remain basically unchanged
- Outermost "valence" electrons hybridize forming continuous "energy bands"

The main features of the E-k relation of GaAs

Direct and Indirect Band Gap

https://slideplayer.com/slide/5239400/

Band gap value of semiconductor

FET Basics – Digital CMOS

On-state

Requirements for logic

- High on-off ratio I_{on}/I_{off} 10⁴...10⁷.
- High I_{on} (high speed).
- Low I_{off} (low static power).
- Steep slope in subthreshold, i.e., small SS.

How to probe the band structure of solids

Photoelectric effect --- > Photoemission

The Nobel Prize in Physics 1981

Nicolaas Bloembergen Prize share: 1/4

Arthur Leonard Schawlow Prize share: 1/4

Kai M. Siegbahn Prize share: 1/2

The Nobel Prize in Physics 1981 was divided, one half jointly to Nicolaas Bloembergen and Arthur Leonard Schawlow "for their contribution to the development of laser spectroscopy" and the other half to Kai M. Siegbahn <u>"for his contribution to the</u> <u>development of high-resolution electron spectroscopy</u>".

The Principle of Photoemission Spectroscopy

First ESCA spectrometer at the Department of Physics in Uppsala.

What is photoemission?

Photon in -> electron out (emission)

What is photoemission spectroscopy? (photoelectron spectroscopy) (PES)

Initial state: ground (neutral) state

Conservation of energy

 E_k : photoelectron kinetic energy $E_i(N)$: total initial state system energy $E_f(N-1)$: total final state system energy Electron energy analyzer

Final state: hole (excited) state

Energy Distribution Curve (EDC) (Spectrum)

Energetics in PES

Hufner, Damascelli

$$E_k = hv - E_B - \phi$$

Conservation of energy

 $E_{v} : \text{vacuum (energy) level}$ $E_{F} : \text{Fermi (energy) level}$ $\phi = E_{v} - E_{F} : \text{work function}$ $\Rightarrow N(E_{kin}) \quad E_{0} : \text{bottom of valence band}$ $V_{0} = E_{v} - E_{0} : \text{inner potential}$

 E_k^{max} marks E_F in spectra E_B measured relative to E_F = 0

Usually fixed photon energy scanning not needed

The Principle of Photoemission Spectroscopy

Angle-Integrated Photoemission Spectroscopy

Conservation of Energy

occupied

-5

unoccupied

Kinetic energy relative to E_F

5

Angle-Integrtaed Photoemission Spectroscopy

Conservation of Energy

$$E_{ph} = E_b + \Phi + E_k$$

Energy Distribution Curve (EDC)

Energy distribution curve (EDC)

28

The Principle of Photoemission Spectroscopy

what is angle-resolved photoemission spectroscopy (ARPES)

What is **ARPES**?

Angle-Resolved Photoemission Spectroscopy

$$k_{\prime\prime\prime} = \sqrt{\frac{2m}{\hbar^2}} E_k \cdot \sin\theta$$

$$k_{\prime\prime\prime}(\text{Å}^{-1}) = 0.5123\sqrt{E_k(eV)} \cdot \sin\theta$$

$$k_{\parallel}(\text{inside}) = k_{\parallel}(\text{outside})$$
Conservation of liner momentum
Important for 3D and 2D band mapping

Conservation of linear momentum parallel to surface

$$k_{out} = \sqrt{\frac{2m}{\hbar^2}} E_{kin}$$
$$k_{in} = \sqrt{\frac{2m}{\hbar^2}} (E_{kin} + V_0)$$
$$k_{out,\parallel} = k_{in,\parallel} \equiv k_{\parallel}$$

"Snell's Law"

$$k_{\parallel} = \sin\theta_{out} \sqrt{\frac{2m}{\hbar^2}} E_{kin} = \sin\theta_{in} \sqrt{\frac{2m}{\hbar^2}} (E_{kin} + V_0)$$

Critical angle for emission

$$(\sin\theta_{out})_{\max} = \sqrt{\frac{E_{kin}}{E_{kin} + V_0}}$$

what is ARPES?

What is ARPES?

We expect to study the electronic structure of solids at VUV region (10 eV~ 100 eV).

Light sources and terminology

- Ultraviolet Photoemission Spectroscopy (UPS)
 - UV He lamp (21.2 eV, 40.8 eV)
 - Laser : 6 eV (BBO), 8 eV (KBBF), 11 eV (gas cell) or HHG (High harmonic generation)
 - Valence band PES, direct electronic state info.
- X-ray Photoemission Spectroscopy (XPS)
 - (Electron Spectroscopy for Chemical Analysis) (ESCA)
 - X-ray gun (Al: 1486.6 eV, Mg: 1253.6 eV)
 - core level PE, indirect electronic state info
 - chemical analysis
- Synchrotron radiation
 - continuous tunable wavelength
 - valance band and core level

Light sources and terminology

UV lamp (He I_{α} 21.2 eV, He II_{α} 40.8 eV)

What is ARPES?

range of BZ is also small.

We expect to study the electronic structure of solids at VUV region (10 eV~ 100 eV).

Photon energy

defines the detectable area of Energy

 $E_{kin}=\hbar\nu-\phi$

defines the accessible area of BZ

$$k_{\prime\prime\prime} = \frac{1}{\hbar} \sqrt{2mE_{kin}} \sin\theta$$

Phys. Rev. B 84, 014509 (2011)

The powerful spectroscopic tools such as XPS and UPS might be limited in in-situ chemical analysis because of the short penetration depth of electrons.

Why are electrons so useful as probes of surfaces?

Or

Not so useful for studying bulk properties !!

Minimum due to electron-electron scattering, mainly plasmons

PES is a surface sensitive technique! (requires UHV) High energy photoemission: several keV to increase bulk sensitivity

- UHV environment : better than 1x10⁻¹⁰ Torr
- Single crystals or *in-situ* growth thin films
- Conductors or semiconductors
- Tunable photon energies

Figure 5.2: (color) The oxygen 1s peaks from Bi2212 at different times after the cleave. A constant background was subtracted from each spectrum to allow direct comparison. The peak derived from bulk oxygen is stable over time, while the surface oxygen peak grows as more oxygen sticks to the cold surface.

HC Hsu, Ph.D. Thesis NTNU(2010) Koralek, U. Colorado Ph.D. Thesis (2007)

- Ultraviolet Photoemission Spectroscopy (UPS)
 - UV He lamp (21.2 eV, 40.8 eV)
 - Laser : 6 eV (BBO), 8 eV (KBBF), 11 eV (gas cell) or HHG (High harmonic generation)
 - Valence band PES, direct electronic state info.
- X-ray Photoemission Spectroscopy (XPS) (Electron Spectroscopy for Chemical Analysis) (ESCA)
 - X-ray gun (Al: 1486.6 eV, Mg: 1253.6 eV)
 - core level PE, indirect electronic state info
 - chemical analysis
- Synchrotron radiation
 - continuous tunable wavelength
 - valance band and core level

Basic Parameters of Taiwan Light Source

- Interval between bunches: 2ns
- Bunch length (1σ@1.6MV): 6.5 mm
- Bunch duration (1σ): 21 ps
- SC Cavity length: 24 cm
- Flight time through SC cavity: 0.8

National Synchrotron Radiation Research

 Bunch current (180/200 filling to I_{avg}=300 mA): 1.67 mA/bunch or 4.17*10⁹ electrons/bunch

• Critical energy of SR Ec(keV) = 0.665 E² (GeV) B(T)

Cheiron2008_KSLiang-11

8 GeV X-Ray Free Electron Laser Facility at SPring-8

European XFEL

Taiwan Photon Source and Taiwan Light Source

How a Synchrotron Works

4. Storage Ring

The booster ring feeds electrons into the storage ring, a many-sided donut-shaped tube. The tube is maintained under vacuum, as free as possible of air or other stray atoms that could deflect the electron beam. Computer-controlled magnets keep the beam absolutely true.

Synchrotron light is produced when the bending magnets deflect the electron beam; each set of bending magnets is connected to an experimental station or beamline. Machines filter, intensify, or otherwise manipulate the light at each beamline to get the right characteristics for experiments.

5. Focusing the Beam

Keeping the electron beam absolutely true is vital when the material you're studying is measured in billionths of a metre. This precise control is accomplished with computer-controlled quadrupole (four pole) and sextupole (six pole) magnets. Small adjustments with these magnets act to focus the electron beam.

> Experimental Stations

Storage Ring

Summer of the local division of the local di

3. An Energy Boost

The linac feeds into the booster ring which uses magnetic fields to force the electrons to travel in a circle. Radio waves are used to add even more speed. The booster ring ramps up the energy in the electron stream to between 1.5 and 2.9 gigaelectron volts (GeV). This is enough energy to produce synchrotron light in the infrared to hard X-ray range.

2. Catch the Wave

The electron stream is fed into a linear accelerator, or linac. High energy microwaves and radio waves chop the stream into bunches, or pulses. The electrons also pick up speed by "catching" the microwaves and radio waves. When they exit the linac, the electrons are travelling at 99.99986 per cent of the speed of light and carry about 300 million electron

Linear Accelerate

lectron Gun

1. Ready, Aim_

iam Line

Synchrotron light starts with an electron gun. A heated element, or cathode, produces free electrons which are pulled through a hole in the end of the gun by a powerful electric field. This produces an electron stream about the width of a human hair.

Source: University of Saskatchewan / Paradigm Media Group Inc.

Superconducting gap

C

Overdoped Bi-2212 sample at two different momenta in the Brillouin zone.

These results strongly suggest that the superconducting gap is anisotropic and, in particular, consistent with a d-wave order parameter (*Scalapino, 1995*). Together with the microwave penetration depth results (*Hardy et al., 1993*), this direct evidence for gap anisotropy played a major role in the early debate on the pairing symmetry (*Levi, 1993*).

54 ZX Shen, PRL (1993)

Bilayer band splitting in overdoped Bi-2212 (Tc = 65 K)

56 DL Feng, PRL (2001)

Kim et al., Nat. Phys. (2015)

Eli Rotenberg, ALS summer school

The carriers have a finite lifetime due to absorption and emission of phonons and other excitations

The quantity determined in ARPES experiments is the single-particle spectral function

$$G(k,\omega) = \frac{1}{\omega - \varepsilon_k - \Sigma(k,\omega)}$$

$$A(k,\omega) = \frac{\operatorname{Im} \Sigma(k,\omega)}{\left[\omega - \varepsilon_k - \operatorname{Re} \Sigma(k,\omega)\right]^2 + \left[\operatorname{Im} \Sigma(k,\omega)\right]^2}$$

$$\Sigma = \operatorname{Re}\Sigma + i\operatorname{Im}\Sigma$$

Dispersion: E-k Relation (Velocity; Effective mass etc.)

國家同步輻射研究中心 National Synchrotron Radiation Research Center Scattering rate (Lifetime)

Optimally doped Bi-2212 cuprate

$$v_k \Delta k = \frac{v_k}{l} = \left| 2 \operatorname{Im} \Sigma(k, \omega) \right|$$

60 T. Valla et al., Science (2000)

Line shape analysis

R.F. Curl H.W. Kroto R.E. Smalley Discovered C₆₀ in 1985 Awarded Nobel prize for Chemistry in 1996

新素材の力で 23本のものつくりを 加速したい。

What we expect to observe in ARPES

Coletti et al., PRB (2013)

Mind the gap of graphene

h-BN

Graphene/SiC

Graphene

Reduce the thickness of materials : quantum well

Quantum well : quantum spin Hall effect (QSHE)

74

If we reduce the thickness of materials to several atomic layer, how the band structure change?

Motivation for studying 2D materials

Vational Synchrotron Radiation Research Center

國旨

Frank Schwierz, Nanoscale (2015)

ARPES – Characterization of emergent quantum materials

Figure 1. Schematic illustrating advantages of 2D materials: surfaces of (a) 3D and (b) 2D materials. The pristine interfaces (without out-of-plane dangling bonds) of 2D materials help reduce the interface traps. Mobile charge distribution in (c) 3D and (d) 2D crystals used as channel materials. The carrier confinement effect in 2D materials leads to excellent gate electrostatics. (e) Various types of 2D materials from insulator to superconductor. E_g denotes the band gap.

Transition Metal Dichalcogenides (TMD)

2D TMD MX₂ M : Mo, W X : S, Se, Te

Lin et. al., 2D Materials (2016)

3R

Transition Metal Dichalcogenides

Zelewski et al., Scientific Reports (2017)

Transition Metal Dichalcogenides : MoS₂

Kuc et. al., PRB (2011)

Transition Metal Dichalcogenides : MoSe₂

Zhang et al., Nat. Nano. (2013)

81

*Transition Metal Dichalcogenides :MoSe*₂

Defect engineering of semiconductor

Tuning the Electronic Structure of a 2D Material

Transition Metal Dichalcogenides : Defect engineering

S-vacancy and strain on the band structure of MoS₂

The band structure of MoS₂ single crystal with varied environment

S-vacancy and strain on the band structure of MoS₂

STM characterization of a MoS₂ single crystal

National Synchrotron Radiation research Center

Sulfur vacancies in monolayer MoS₂ and its electrical contacts

S vacancy has a formation energy of 2.35 eV in S-rich condition Mo vacancy has a formation energy of 8.02 eV in Mo-rich condition

Formation energies as a function of the Fermi level

Komsa et al., PRB (2015)

Bandgap, Mid-Gap States, and Gating Effects in MoS₂

Figure 4. (a) STM constant current topography image of a 50 × 50 nm area at $V_b = 1.4$ V and I = 20 pA on bulk MoS₂ showing three types of defects with different apparent depths as indicated by the height profiles in the inset. (b) Constant current STM image on an isolated defects. ($V_b = 1.2$ V and I = 20 pA). (c) Constant current STM atomic resolution image on a twin-defect. ($V_b = 1.2$ V and I = 20 pA). (d) dI/dV spectrum taken far from any defect. (e) dI/dV spectrum on isolated defect in (b) shows a pronounced in-gap resonance near -0.94 V. The Fermi level is ~ 0.35 eV below the CB edge. The measurement was referenced to a set-point with tunneling resistance 15 G Ω (bias voltage $V_b = -1.5$ V and tunneling current I = 100 pA). (f) dI/dV spectrum on the twin-defect in (c) shows a pronounced in-gap resonance near -0.94 V and a satellite peak at -0.7 V. Parameters are the same as in (e).

Lu et al., Nano Lett. (2014)

Evidence from STS measurement

Fresh surface

Nonfresh surface

93 Siao et al., Nat. Comm. (2018)

Engineering the Catalytic Performance of TMDs

Hydrogen evolution reaction (HER)

Topological insulators

Spin-orbital interaction

Concept of spin-orbit coupling

Spin-orbital interaction

(National Synu

Au(111) : The inversion symmetry is broken at the surface

 $\overline{M}/2$ **K**/2 Surface de Fermi $(E=E_F)$ E_{F} $E(-k,\downarrow)$ $E(-k,\uparrow)$ $E(k,\uparrow)$ $E(k,\downarrow)$ $k_{\parallel} = 0$

In a nearly free electron picture, $\vec{\nabla}V$ is perpendicular to the surface

Rashba Splitting

Accumulate spectra of Rashba effect on Au(111) as the angle is scanned

國家同步輻射研究中心 National Synchrotron Radiation Research Center

Scientific Cases: Topological protected surface state

Shou-Cheng Zhang (1963-2018)

Strong spin-orbital interaction Heavy elements

	10	11	12	13	14	15	16	17	18
				5 B Boron	6 C Carbon	7 N Nitrogen	8 O Oxvaen	9 F Fluorine	10 Ne Neon
				13 Al Aluminium	14 Si Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Ar Argon
	28	29	30	31	32	33	34	35	36
	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
	46	47	48	49	50	51	52	53	54
	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
	78	79	80	81	82	83	84	85	86
	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
D	110	111	112	113	114	115	116	117	118
	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
	armstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson

Scientific Cases: Topological protected surface state

Xiao-Liang Qi and Shou-Cheng Zhang, RMP (2011)

3D topological insulators

Strong spin-orbit coupling Induce the band inversion

Xiao-Liang Qi and Shou-Cheng Zhang, RMP (2011)

Scientific Cases: Topological protected surface state

Scientific Cases: Topological protected surface state

Topological protected surface state

Xiao-Liang Qi and Shou-Cheng Zhang, RMP (2011)

Xia et al., Nature Physics (2009) Hsieh et al., Nature (2009)

Topological Insulators probed by ARPES

Scientific Cases: Dirac semimetal and Weyl semimetal

Proximity effect in topological insulators

С А 4 QL 7 QL 10 QL 0 Before cleavage -0.2 Cleave pi (∑a)-0.4 Щ Al₂O₃ (0001) Sea (0001 Ag epoxy Cu sheet -0.6 -0.8 0.3 -0.3 0.3 -0.3 0 -0.3 0 0 0.3 в k_{\parallel} (Å⁻¹) D Е After cleavage 3.8 nm ntensity (a.u.) i,Se. (0001) O KLL Ag epoxy Cu sheet 600 nm -600 -400 E (eV) -200 -800 0 0 nm

Proximity effect in topological insulators

Proximity effect in topological insulators

Proximity Effect in Graphene–Topological-Insulator Heterostructures

Junhua Zhang, PRL (2014)

Proximity effect in Gr-Topological insulator heterostructure

A Gr-TI heterostructure channel and ferromagnetic (FM) tunnel contacts for spin injection and detection in a nonlocal transport geometry

Can we control the spin texture with SE/TI heterostructure.....

Mahmoud M. Asmar et al., PRB (2017)

Motivation for studying TI hybrid nanostructure

Group	10	11	12	13	14	15	16	17	18
				5	6	7	8	9	10
2				B Boron	C Carbon	N Nitrogen	O Oxygen	F Fluorine	Ne Neon
				13	14	15	16	17	18
3				Al Aluminium	Si Silicon	P Phosphorus	S Sulfur	Cl Chlorine	Ar Argon
	28	29	30	31	32	33	34	35	36
4	Ni Nickel	Cu Copper	Zn Zinc	Ga Gallium	Ge Germanium	As Arsenic	Se Selenium	Br Bromine	Kr Krypton
	46	47	48	49	50	51	52	53	54
5	Pd Palladium	Ag Silver	Cd Cadmium	In Indium	Sn Tin	Sb Antimony	Te Tellurium	I lodine	Xe Xenon
6	78 Pt Platinum	79 Au Gold	80 Hg Mercury	81 TI Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
7	110 Ds Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Nh Nihonium	114 Fl Flerovium	115 Mc Moscovium	116 Lv Livermorium	117 Ts Tennessine	118 Og Oganesson

2D Group V monoelemental monolayer

Zhang et al., Angew. Chem. (2015) Yang, Phys. Chem. Chem. Phys (2015)

115

Band gap of group 15 monolayers

116

Zhang et al., Angew. Chem. (2015)

The electronic structure of black phosphorus

Black phosphorus (BP)

Catellanoas-Gomez, J. Phys. Chem. Lett. (2015)

Synthesis and chemistry of elemental 2D materials

Forms SE2DM

Synthesis methods:

- Micromechanical exfoliation
- Physical vapour deposition
- Chemical vapour deposition

a Micromechanical exfoliation

 ${\bf c}\,$ Chemical vapour deposition

118

b Physical vapour deposition

A topological phase transition in Sb bilayer

Chuang et al., APL (2013) Ji et al., Nat. Comm. (2016)

Synthesis and chemistry of elemental 2D materials

		Compressive Tensile	$\sqrt{3} \times \sqrt{3} R$	30 ^g - (111) c	(2 × 2) - (110)
β-antimonene	Free-standing	Tensile Strain	Ultra-flat	Tensile Strain	Compressive Strain
Supporting Substrate	No	PdTe ₂	Ag(111)	Sb-Cu(111)	Sb-Cu(110)
Lattice Constant (a, Å)	4.12	4.13	5.01	4.43	3.84
Buckling Height (h, Å)	1.65	1.65	0	1.42	1.78
Sb-Sb bond length (l, Å)	2.89	2.89	2.89	2.93	2.95
References	2c	10c	10e	This work	This work

Synthesis and chemistry of elemental 2D materials

Cu(111) : 4.43 Å Cu(100) : 3.84 Å

Nontrivial Topology of Pure Bismuth

122 Ito et al. PRL (2016)

Nontrivial Topology of Pure Bismuth

Nontrivial Topology of Pure Bismuth

Bismuthene on a SiC Substrate

124 Reis et al. Science (2017)

The fabrication of bismuthene and antimonene on TIs

The fabrication of bismuthene on TIs

*Bi-BLs/Bi*₂*Se*₃ *prepared with the atomic hydrogen etching method*

² 126 Su et al., Chem. Mater. (2017)

The fabrication of bismuthene on TIs

The fabrication of bismuthene on TIs

128

Proximity effect in topological insulators

Tunable Spin-to-Charge Conversion in TI hybrid-structure

Tunable Spin-to-Charge Conversion in TI hybridstructure

Incorporating a "second" spin-splitting band, a Rashba interface formed by inserting a bismuth interlayer between the ferromagnet and the Bi_2Se_3 (i.e., ferromagnet/Bi/ Bi_2Se_3 heterostructure), λ_{IEE} shows a pronounced increase (up to 280 pm) compared with that in pure TIs.

Future and outlook

- Spin and dynamic behavior
 - Topological insulator, 2D materials, superconductors, complex oxides, graphene-based materials....
 - Time-resolved ARPES.
 - Spin-resolved ARPES
- Discovery and characterization of advanced materials
 - Novel materials fabricated with the CVD method, micro-mechanic exfoliation... usually have smaller domain size in the early stage of material discovery. (van der Waals heterostructure, twisted bilayer graphene, 2D materials)
 - Single crystals with broken surface after in-situ cleaving.
 - Gating Effects in 2D Materials

Nano Everywhere

Materials of interest often contain intrinsic, extrinsic, and designed nanoscale features.

Need rapid electronic structure mapping at the nanoscale

Multi-thickness domains existed in an exfoliated graphene flake

A IOWA STATE

Van der Waals Heterostructures

C LHS with smooth interface

е

a LHS with rough interface

Ref : Shi et al., Nat. Comm. (2017) Hsu et al., Nat Comm. (2017)

Magic Angle in Twisted Graphene

<u>'Magic' Twist in Stacked Graphene Reveals Potentially</u> <u>Powerful Superconducting Behavior</u>

onature

The simulated band structure of TBG

Scientific Case : Magic Angle Twisted Bilayer Graphene (MATBG)

Cao et al., Nature (2018)

Scientific Case : Magic Angle Twisted Bilayer Graphene (MATBG)

The simulated band structure of twisted bilayer graphene

Cao et al., Nature (2018)

Scientific Case : Magic Angle Twisted Bilayer Graphene (MATBG)

Figure 1 | **Dielectric engineering in magic-angle twisted bilayer graphene (MATBG). a**, MATBG comprises two layers of graphene (2D sheets of carbon atoms) that are stacked with their honeycomb lattices slightly rotated out of alignment. The atoms form a moiré pattern in which the spatial extent of the unit cell (the smallest repeating unit) is as large as 15 nanometres. b, Stepanov *et al.*⁴ report an experiment in which boron nitride acts as a dielectric (insulating) spacer between MATBG and a graphite layer. Mirror charges (charges of opposite sign to those in the graphite) are induced in the MATBG. When the thickness of the spacer is less than the spatial extent of the unit cell, the interaction strength of electrons in the MATBG is substantially altered. Arora *et al.*⁵ report an experiment in which a tungsten diselenide layer is included in a related set-up (not shown).

國家同步輻射研究中心 National Synchrotron Radiation Research Center
Scientific Case : Superconductivity in MATBG stabilized by WSe2

Arora., Nature (2020)

Scientific Case : misaligned Single Layer Graphene on ML h-BN

Balents., Nature Physics (2020)

Scientific Case : misaligned Single Layer Graphene on ML h-BN

Balents., Nature Physics (2020)

Scientific Case : Proliferation of zero-field narrow-band systems

Balents., Nature Physics (2020)

Scientific Case : Fabrication of van der Waals heterostructure

Scientific Case : Fabrication of van der Waals heterostructure

Natic

Liu et al., Nat. Comm (2014)

With spatial and momentum k information

Conduct ARPES experiment with smaller beam size

Electronic and Chemical imaging of Nanowires and patterned Samples

Band structure of transition metal dichalcogenides and their correlation effects

Magic angle in twisted Graphene

Magic angle in twisted Graphene

Magic angle in twisted Graphene

Van der Waals Heterostructures

155 *Ref : Wilson et al., Sci. Adv. (2020)*

Van der Waals Heterostructures

156 Ref : Ulstrup et al., Nat Comm. (2017)

Future and outlook

- Spin and dynamic behavior
 - Topological insulator, 2D materials, superconductors, complex oxides, graphene-based materials....
 - Time-resolved ARPES.
 - Spin-resolved ARPES
- Discovery and characterization of advanced materials
 - Novel materials fabricated with the CVD method, micro-mechanic exfoliation... usually have smaller domain size in the early stage of material discovery. (van der Waals heterostructure, twisted bilayer graphene, 2D materials)
 - Single crystals with broken surface after in-situ cleaving.
 - Gating Effects in 2D Materials

First-ever visualizations of electrical gating effects on electronic structure

Paul V. Nguyen et al., Nature (2019)

Paul V. Nguyen et al., Nature (2019)

Beamlines in light sources worldwide for micro- or nano-ARPES

valence band nanoARPES

operating: Elettra, Soleil, DLS

planning/commissioning: TPS, NSLS-2

nanoARPES : X-ray focusing optics

X-ray focusing optics: zone plates, mirrors, capillaries

Zone Plate optics – circular grating with decreasing width: from ~ 200 to ~ 10000 eV <u>Monochromatic:</u> <u>Resolution achieved 15 nm in</u> <u>transmission</u>

KP-B mirrors each focusing in one direction: soft & hard Xrays: ~ 100 nm <u>Soft & hard x-rays!</u> <u>achromatic</u> focal point, easy <u>energy</u> tunability, comfortable working distance <u>Resolution ≤ 100 nm</u>

Normal incidence: spherical mirrors with multilayer interference coating (Schwarzschild Objective) Monochromatic, good for <u>E < 100eV</u> <u>Resolution: best ~ 100 nm</u>

國家同步輻射研究中心 National Synchrotron Radiation Research Center Capillary: multiple reflection concentrator

Hard x-rays ~ 8-18 keV Resolution: > 3000 nm

Refractive lenses

Hard x-rays ~ 4-70 keV Resolution: > 1000 nm

The end station design of NanoARPES Branch

Mational Synchrotron Radiation Research Center

The end station design of NanoARPES Branch

The end station design of NanoARPES Branch

Future and outlook

- Spin and dynamic behavior
 - Topological insulator, 2D materials, superconductors, complex oxides, graphene-based materials....
 - Time-resolved ARPES
 - Spin-resolved ARPES
- Discovery and characterization of advanced materials
 - Novel materials fabricated with the CVD method, micro-mechanic exfoliation... usually have smaller domain size in the early stage of material discovery. (van der Waals heterostructure, twisted bilayer graphene, 2D materials)
 - Single crystals with broken surface after in-situ cleaving.
 - Gating Effects in 2D Materials

Table 1. Some typical laser light sources used in ARTES.										
Laser catagory	Generation	Applica- tion	Pho. energy (eV)	Pulse width (ps, fs)	Rep. rate (kHz, MHz)	Max.Pho. flux (photons s ⁻¹)	Energy res.) (meV)	Tem. Res. (fs)	References	Remarks
Quasi-CW	NLO crystal SFG+SHG	High-res ARPES	7	${\sim}10~{\rm ps}$	80 MHz	$1.5 imes 10^{15}$	0.26 meV	1	Liu et al [21]	(a)
			6	~70 fs (seed)	100 MHz	${\sim}10^{15}$	4.7 meV	/	Koralek et al [20]	(b)
			7	$\sim 10 \text{ ps}$	120 MHz	Unknown	0.025 meV	1	Okazaki et al [186]	(c)
			5.3-7	5 ps	76 MHz	$\sim 10^{14}$	Unsecified	1	Jiang et al [87]	(d)
CW	NLO crystal SFG+SHG	High-res ARPES	6.05	Infinite	Infinite	1×10^{15}	0.01	1	Tamai et al [37]	(e)
			6.49	Infinite	Infinite	1.25×10^{15}	${\sim}10^{-7}meV$	1	Scholz et al [54]	(f)
Pulsed laser	NLO crystal SFG+SHG	Tr- ARPES	1.5,6	50 fs, 160 fs	80 MHz	Unspecified	<22 meV	163 fs	Sobota et al [41]	(g)
			1.5,6.04	35 fs, 55 fs	250 kHz	$\sim 10^{13}$	40 meV	65 fs	Faure et al [40]	
			1.48, 5.92	170 fs,-	250 kHz	Unspecified	≥10.5 meV	≥240 fs	Ishida et al [149]	
HHG	Noble gas HHG	Tr- ARPES	1.58, 15–40	40 fs, 100 fs	10 kHz	3.6×10^{17}	90 meV@35.6 eV	125 fs	Frietsch et al [43]	(h)
			1.6, 22.1	30 fs, 11 fs	10 kHz	Unspecified	170 meV	13 fs	Rohde et al [42]	(i)
			1.57, 20.4	30 fs	1 kHz	Unspecified	Unspecified	30 fs	Petersen et al [31]	
Mod./ Reson. type HHG	Mixed rare gas	High-res ARPES	10.5	10ps,	0.2–8 MHz	9×10^{12}	<1 meV	1	Berntsen et al [75]	(j)
			10.9	100 ps,	1-20 MHz	×10 ¹³	<2 meV	1	Yu He et al [76]	(k)
FEL	Long undu- lator	Tr- ARPES	26-300	30–150 ps	<10 Hz	Very high	300 meV	700 fs	Hellmann et al [59]	

Table 1. Some typical laser light sources used in ARPES.

Probing unoccupied states of Bi₂Se₃ with 2PPE

Hierarchy of time scales: from as to ps

Separation of electronic and nuclear dynamics

High repetition rate/ lower photon flux in single pulse

National Synchrotron Radiation Research Center

Madeo et al., Science (2020)

Above Bandgap Excitation

Time-resolved ARPES : THz exciting source

Reimann et al., Nature (2018)
Time-resolved ARPES :THz exciting source

Reimann et al., Nature (2018)

Taiwan Photon Source and Taiwan Light Source

國家同步輻射研究中心 National Synchrotron Radiation Research Center